Aldaketak
On 2025(e)ko urriaren 7(a) 22:56:25 (UTC),
-
Moved TIFF Coastal Science data collections from organization Planet Texas 2050 to organization Dynamic Sensemaking Framework
f | 1 | { | f | 1 | { |
2 | "author": "", | 2 | "author": "", | ||
3 | "author_email": "Amin Kiaghadi", | 3 | "author_email": "Amin Kiaghadi", | ||
4 | "creator_user_id": "a21a024c-343c-4b53-a214-49d6fe62a720", | 4 | "creator_user_id": "a21a024c-343c-4b53-a214-49d6fe62a720", | ||
n | 5 | "groups": [], | n | 5 | "groups": [ |
6 | { | ||||
7 | "description": "The Smart & Connected Communities project | ||||
8 | focuses on improving resilience in communities facing extreme weather | ||||
9 | events and chronic stressors. \r\n\r\nIt aims to create a secure | ||||
10 | online portal where residents can share their local knowledge about | ||||
11 | these challenges. Researchers will work with the community to | ||||
12 | integrate this local knowledge with existing data sets used for | ||||
13 | planning and disaster preparation. The project not only enhances | ||||
14 | community resilience but also contributes to the national interest by | ||||
15 | providing a model that other communities can adapt. It involves | ||||
16 | creating innovative tools, data privacy processes, and knowledge | ||||
17 | integration frameworks, promoting local expertise in decision-making, | ||||
18 | and enhancing computer-based modeling for better resilience and | ||||
19 | preparedness.\r\n\r\nPrinciple Funder: National Science Foundation | ||||
20 | Smart & Connected Communities (Award No. 2127353)", | ||||
21 | "display_name": "Texas: Central Region", | ||||
22 | "id": "bf53a48a-8ca5-4a0f-9772-daf4bf460f16", | ||||
23 | "image_display_url": | ||||
24 | an.tacc.utexas.edu/uploads/group/2025-02-27-224507.700044BSicon.jpeg", | ||||
25 | "name": "central-texas-region", | ||||
26 | "title": "Texas: Central Region" | ||||
27 | }, | ||||
28 | { | ||||
29 | "description": "The Smart & Connected Communities project | ||||
30 | focuses on improving resilience in communities facing extreme weather | ||||
31 | events and chronic stressors. It aims to create a secure online portal | ||||
32 | where residents can share their local knowledge about these | ||||
33 | challenges. Researchers will work with the community to integrate this | ||||
34 | local knowledge with existing data sets used for planning and disaster | ||||
35 | preparation. The project not only enhances community resilience but | ||||
36 | also contributes to the national interest by providing a model that | ||||
37 | other communities can adapt. It involves creating innovative tools, | ||||
38 | data privacy processes, and knowledge integration frameworks, | ||||
39 | promoting local expertise in decision-making, and enhancing | ||||
40 | computer-based modeling for better resilience and | ||||
41 | preparedness.\r\n\r\nPrinciple Funder: National Science Foundation | ||||
42 | Smart & Connected Communities (Award No. 2127353)", | ||||
43 | "display_name": "Texas: Rio Grande Valley Region", | ||||
44 | "id": "06257bd5-3ba2-47dd-ba84-ad3a83092297", | ||||
45 | "image_display_url": | ||||
46 | exas.edu/uploads/group/2025-06-27-031854.161623BeulahModelScreen.png", | ||||
47 | "name": "rgv", | ||||
48 | "title": "Texas: Rio Grande Valley Region" | ||||
49 | }, | ||||
50 | { | ||||
51 | "description": "Core infrastructure for a reusable Knowledge | ||||
52 | Management Platform. Research and develop scalable decision support | ||||
53 | and deep uncertainty cybertools. How: Collaborate with research team | ||||
54 | to design and implement services that support data and model | ||||
55 | management and extend CI and DSS approaches that will be sustained via | ||||
56 | leveraged efforts with other initiatives, like TDIS, DOLCE, MINT, etc. | ||||
57 | Research Focus (RF's) to develop advanced decision support tools that | ||||
58 | address: * RF1 - knowledge capture for sensed and unstructured | ||||
59 | information, * RF2 \u2013 develop reusable analytical methods that | ||||
60 | use natural language processing to computationally deconstruct problem | ||||
61 | formulations and link data/models with decision problems. * RF3 \u2013 | ||||
62 | explore and design methods and utilities that support a standardized | ||||
63 | use of methods for decision making under deep uncertainty. | ||||
64 | Implementation Science to support stakeholder community needs and act | ||||
65 | as a learning laboratory for Intelligent Systems and IFL | ||||
66 | researchers\r\n\r\nPrinciple Funder: Planet Texas 2050", | ||||
67 | "display_name": "Texas: Southeast Region", | ||||
68 | "id": "fc1a600d-1f56-421b-9f8a-8deca201ff03", | ||||
69 | "image_display_url": | ||||
70 | oup/2025-02-21-163737.483713Screenshot-2025-02-21-at-10.37.15-AM.png", | ||||
71 | "name": "setx", | ||||
72 | "title": "Texas: Southeast Region" | ||||
73 | }, | ||||
74 | { | ||||
75 | "description": "", | ||||
76 | "display_name": "Texas: Statewide Subsidence Data", | ||||
77 | "id": "92969cee-3dfc-4a30-8b77-a551b06c5ddf", | ||||
78 | "image_display_url": | ||||
79 | texas.edu/uploads/group/2025-06-27-032017.037656SUBSIDEthumbnail.png", | ||||
80 | "name": "subsidence", | ||||
81 | "title": "Texas: Statewide Subsidence Data" | ||||
82 | }, | ||||
83 | { | ||||
84 | "description": "", | ||||
85 | "display_name": "Texas: Western Region", | ||||
86 | "id": "219f08ff-2d96-4239-b3ec-57d5ffee87e9", | ||||
87 | "image_display_url": | ||||
88 | tacc.utexas.edu/uploads/group/2025-02-21-162954.184423PrudeRanch.png", | ||||
89 | "name": "west-texas", | ||||
90 | "title": "Texas: Western Region" | ||||
91 | } | ||||
92 | ], | ||||
6 | "id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | 93 | "id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | ||
7 | "isopen": false, | 94 | "isopen": false, | ||
8 | "license_id": "notspecified", | 95 | "license_id": "notspecified", | ||
9 | "license_title": "License not specified", | 96 | "license_title": "License not specified", | ||
10 | "maintainer": "", | 97 | "maintainer": "", | ||
11 | "maintainer_email": "spierce@tacc.utexas.edu", | 98 | "maintainer_email": "spierce@tacc.utexas.edu", | ||
12 | "metadata_created": "2025-09-23T19:59:27.413960", | 99 | "metadata_created": "2025-09-23T19:59:27.413960", | ||
n | 13 | "metadata_modified": "2025-10-07T17:39:28.388682", | n | 100 | "metadata_modified": "2025-10-07T22:56:25.453428", |
14 | "name": "tiff-links-go-look", | 101 | "name": "tiff-links-go-look", | ||
15 | "notes": "Links shared during TIFF presentation by Amin Kiaghadi in | 102 | "notes": "Links shared during TIFF presentation by Amin Kiaghadi in | ||
16 | September 2025. ", | 103 | September 2025. ", | ||
17 | "num_resources": 2, | 104 | "num_resources": 2, | ||
18 | "num_tags": 1, | 105 | "num_tags": 1, | ||
19 | "organization": { | 106 | "organization": { | ||
20 | "approval_status": "approved", | 107 | "approval_status": "approved", | ||
n | 21 | "created": "2024-12-13T20:42:00.734799", | n | 108 | "created": "2025-09-10T20:59:33.489696", |
22 | "description": "Planet Texas 2050's interdisciplinary research | 109 | "description": "", | ||
23 | teams work on designing solutions for stronger, more resilient | 110 | "id": "673b95fc-4c5a-4d9a-88c7-ed7cf35bb48c", | ||
24 | communities. The initiative combines expertise from architects, | 111 | "image_url": | ||
25 | archaeologists, city planners, public health experts, geologists, | 112 | 38-42c8-42c3-8234-8c7f908e524f/download/thumbnailfororganization.png", | ||
26 | engineers, biologists, computer scientists, artists and | ||||
27 | community-based partners in an eight-year research program.", | ||||
28 | "id": "7e505d35-12b2-4a13-bd76-173286cb319a", | ||||
29 | "image_url": "2025-01-01-201726.957849Planet-Texas-Logo.png", | ||||
30 | "is_organization": true, | 113 | "is_organization": true, | ||
n | 31 | "name": "planet-texas-2050", | n | 114 | "name": "dynamic-sensemaking-framework", |
32 | "state": "active", | 115 | "state": "active", | ||
n | 33 | "title": "Planet Texas 2050", | n | 116 | "title": "Dynamic Sensemaking Framework", |
34 | "type": "organization" | 117 | "type": "organization" | ||
35 | }, | 118 | }, | ||
t | 36 | "owner_org": "7e505d35-12b2-4a13-bd76-173286cb319a", | t | 119 | "owner_org": "673b95fc-4c5a-4d9a-88c7-ed7cf35bb48c", |
37 | "private": false, | 120 | "private": false, | ||
38 | "relationships_as_object": [], | 121 | "relationships_as_object": [], | ||
39 | "relationships_as_subject": [], | 122 | "relationships_as_subject": [], | ||
40 | "resources": [ | 123 | "resources": [ | ||
41 | { | 124 | { | ||
42 | "cache_last_updated": null, | 125 | "cache_last_updated": null, | ||
43 | "cache_url": null, | 126 | "cache_url": null, | ||
44 | "created": "2025-09-23T19:59:35.714938", | 127 | "created": "2025-09-23T19:59:35.714938", | ||
45 | "description": "", | 128 | "description": "", | ||
46 | "format": "HTML", | 129 | "format": "HTML", | ||
47 | "hash": "", | 130 | "hash": "", | ||
48 | "id": "45be2b3c-c937-41eb-8f91-5ff3d08c6764", | 131 | "id": "45be2b3c-c937-41eb-8f91-5ff3d08c6764", | ||
49 | "last_modified": null, | 132 | "last_modified": null, | ||
50 | "metadata_modified": "2025-09-23T19:59:35.711643", | 133 | "metadata_modified": "2025-09-23T19:59:35.711643", | ||
51 | "mimetype": "text/html", | 134 | "mimetype": "text/html", | ||
52 | "mimetype_inner": null, | 135 | "mimetype_inner": null, | ||
53 | "mint_standard_variables": "", | 136 | "mint_standard_variables": "", | ||
54 | "name": "https://webapps.usgs.gov/TIFF/index.html", | 137 | "name": "https://webapps.usgs.gov/TIFF/index.html", | ||
55 | "package_id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | 138 | "package_id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | ||
56 | "position": 0, | 139 | "position": 0, | ||
57 | "resource_type": null, | 140 | "resource_type": null, | ||
58 | "size": null, | 141 | "size": null, | ||
59 | "state": "active", | 142 | "state": "active", | ||
60 | "url": "https://webapps.usgs.gov/TIFF/index.html", | 143 | "url": "https://webapps.usgs.gov/TIFF/index.html", | ||
61 | "url_type": null | 144 | "url_type": null | ||
62 | }, | 145 | }, | ||
63 | { | 146 | { | ||
64 | "cache_last_updated": null, | 147 | "cache_last_updated": null, | ||
65 | "cache_url": null, | 148 | "cache_url": null, | ||
66 | "created": "2025-10-07T17:38:34.348659", | 149 | "created": "2025-10-07T17:38:34.348659", | ||
67 | "description": "", | 150 | "description": "", | ||
68 | "format": "HTML", | 151 | "format": "HTML", | ||
69 | "hash": "", | 152 | "hash": "", | ||
70 | "id": "f881c71d-cbd0-4eb4-82ef-90c0d985455c", | 153 | "id": "f881c71d-cbd0-4eb4-82ef-90c0d985455c", | ||
71 | "last_modified": null, | 154 | "last_modified": null, | ||
72 | "metadata_modified": "2025-10-07T17:38:34.343050", | 155 | "metadata_modified": "2025-10-07T17:38:34.343050", | ||
73 | "mimetype": "text/html", | 156 | "mimetype": "text/html", | ||
74 | "mimetype_inner": null, | 157 | "mimetype_inner": null, | ||
75 | "mint_standard_variables": "", | 158 | "mint_standard_variables": "", | ||
76 | "name": "Mapped Data Resources for TIFF Coastal Science ", | 159 | "name": "Mapped Data Resources for TIFF Coastal Science ", | ||
77 | "package_id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | 160 | "package_id": "6ba2960a-17b4-49c9-9b8b-9887d8acfd1d", | ||
78 | "position": 1, | 161 | "position": 1, | ||
79 | "resource_type": null, | 162 | "resource_type": null, | ||
80 | "size": null, | 163 | "size": null, | ||
81 | "state": "active", | 164 | "state": "active", | ||
82 | "url": "https://dev-webapps.usgs.gov/tiff/map.html", | 165 | "url": "https://dev-webapps.usgs.gov/tiff/map.html", | ||
83 | "url_type": null | 166 | "url_type": null | ||
84 | } | 167 | } | ||
85 | ], | 168 | ], | ||
86 | "spatial": | 169 | "spatial": | ||
87 | 500001,25.57071713485427],[-106.78710937500001,25.57071713485427]]]}", | 170 | 500001,25.57071713485427],[-106.78710937500001,25.57071713485427]]]}", | ||
88 | "state": "active", | 171 | "state": "active", | ||
89 | "tags": [ | 172 | "tags": [ | ||
90 | { | 173 | { | ||
91 | "display_name": "LRGV Flood Collection", | 174 | "display_name": "LRGV Flood Collection", | ||
92 | "id": "de766217-dbd6-414a-9d3d-72c2a8b373a0", | 175 | "id": "de766217-dbd6-414a-9d3d-72c2a8b373a0", | ||
93 | "name": "LRGV Flood Collection", | 176 | "name": "LRGV Flood Collection", | ||
94 | "state": "active", | 177 | "state": "active", | ||
95 | "vocabulary_id": null | 178 | "vocabulary_id": null | ||
96 | } | 179 | } | ||
97 | ], | 180 | ], | ||
98 | "title": "TIFF Coastal Science data collections", | 181 | "title": "TIFF Coastal Science data collections", | ||
99 | "type": "dataset", | 182 | "type": "dataset", | ||
100 | "url": "", | 183 | "url": "", | ||
101 | "version": "" | 184 | "version": "" | ||
102 | } | 185 | } |